NutraHacker

Complete Gene Mutation Report for Customer: 2e41333d-68d0-4b9c-9b71-683fce4a2ab5

Instructions:

NutraHacker reports mutations (single nucleotide polymorphisms) in this uploaded genome. Genes not reported in this report are either normal, not actionable, or not currently detected by NutraHacker. The expected allele is the one seen in a normally functioning gene. The high risk alleles reported are the ones measured from the uploaded genome. NutraHacker reports the effects of these mutations as discovered by published empirical data and suggests nutritional supplements that can mitigate potential issues caused by these mutations.

This report is meant to serve as a guide for nutritional supplementation for the owner of the genome and is not applicable to any other individual. Supplement quantities and dosages are not included as they are indicated on the purchased product. Multiple recommendations for the same supplement does not mean that the dosage should be multiplied. In the case of a conflict (such as a particular vitamin being both encouraged and discouraged), the owner of the genome should assess his/her own personal biology to decide whether to include or discard that particular supplement.

NOTICE:

State law allows any person to provide nutritional advice or give advice concerning proper nutrition--which is the giving of advice as to the role of food and food ingredients, including dietary supplements. This state law does NOT confer authority to practice medicine or to undertake the diagnosis, prevention, treatment, or cure of any disease, pain, deformity, injury, or physical or mental condition and specifically does not authorize any person other than one who is a licensed health practitioner to state that any product might cure any disease, disorder, or condition.

NutraHacker reports are for scientific, educational and nutritional information only and are not intended to diagnose, cure, treat or prevent any disease, disorder or condition.

Thank you for using NutraHacker. To your health!

Gender of customer: Male

A total of 59 mutations were detected at this time for your genome out of the 195 polymorphisms assessed.

There were 18 homozygous mutations.

There was 1 sex-linked mutation.

There were 40 heterozygous mutations.

Please continue to the next page to begin your discovery process.

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Detoxification	rs2606345	CYP1A1	С	AA: 2/2	11.1603%	Phase I xenobiotic metabolism,	Reduced function of enzyme,	Diindolylmethane	
						PAH's, metabolize E2 to	effects vary with race		
						2-hydroxyestradiol			
Detoxification	rs72547513	CYP1A2	С	AA: 2/2	N/A	Hydroxylation or dealkylation of	CYP1A2*11 allele with	Induce with broccoli,	Curcumin, Cumin,
						xenobiotics, Phase I, metabolize	approximately 5% activity of that	Cabbage,	Grapefruit
						E2 to 2-hydroxyestradiol	of the CYP1A2 wild type	Diindolylmethane,	
								Glucarate, NAC,	
								Cardamom,	
								Sulforaphane	
Detoxification	rs762551	CYP1A2	А	AC: 1/2	46.8902%	Hydroxylation or dealkylation of	Slow to metabolize caffeine, Main	Induce with broccoli,	Curcumin, Cumin,
						xenobiotics, Phase I, metabolize	liver pathway	Cabbage,	Grapefruit
						E2 to 2-hydroxyestradiol		Diindolylmethane,	
								Glucarate, NAC,	
								Cardamom,	
								Sulforaphane	
Detoxification	rs1056827	CYP1B1	G	AC: 1/2	42.4033%	4-hydroxylation of estrogen	Increased enzyme activity,	Diindolylmethane	
							undesirable 4-hydroxylation of		
							estrogen		
Detoxification	rs1799853	CYP2C9	С	CT: 1/2	16.3208%	Metabolizes coumadin, NSAID's,	20% reduction in activity		Substrates of this
						aspirin, phenytoin and	heterozygous, 40% reduction		enzyme
						sulfonylureas	homozygous		
Detoxification	rs16947	CYP2D6	G	AG: 1/2	47.4512%	Detoxifies 20% of prescription	Possible ultra metabolizer		Substrates of this
						drugs			enzyme
Detoxification	rs1050450	GPX1	С	AA: 2/2	7.19760%	Glutathione peroxidase functions	Deficiency in glutathione	Selenium, lodine	
						in the detoxificationof hydrogen	peroxidase		
						peroxide, and is one of the most			
						important antioxidant enzymes in			
						humans.			
Detoxification	rs1800668	GPX1	С	AA: 2/2	1.65660%	Glutathione peroxidase functions	Decreased activity of glutathione	Selenium	
						in the detoxificationof hydrogen	peroxidase		
						peroxide, and is one of the most			
						important antioxidant enzymes in			
		1				humans.			

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Detoxification	rs1695	GSTP1	G	AG: 1/2	42.4696%	Conjugation toxins to glutathione	Persons having the alleles AA or	NAC, Whey	Vitamin E
							AG had an increase in		
							inflammatory interleukin-6 (IL-6)		
							upon supplementing		
							alpha-tocopherol (the most		
							common form of Vitamin E in a		
							North American diet) while those		
							with GG saw a decrease.		
Detoxification	rs1208	NAT2	А	AG: 1/2	47.2515%	This gene encodes an enzyme	Fast metabolizer	NAC, Vitamin B2,	
						that functions to both activate and		Vitamin B3, Vitamin	
						deactivate arylamine and		B5, Molybdenum	
						hydrazine drugs and carcinogens.			
Detoxification	rs1799929	NAT2	С	CT: 1/2	N/A	This gene encodes an enzyme	Decreased activity	NAC, Vitamin B2,	
						that functions to both activate and		Vitamin B3, Vitamin	
						deactivate arylamine and		B5, Molybdenum	
						hydrazine drugs and carcinogens.			
Detoxification	rs1801280	NAT2	Т	CT: 1/2	46.1933%	This gene encodes an enzyme	Decreased activity	NAC, Vitamin B2,	
						that functions to both activate and		Vitamin B3, Vitamin	
						deactivate arylamine and		B5, Molybdenum	
						hydrazine drugs and carcinogens.			
Detoxification	rs1800566	NQO1	С	AA: 2/2	5.34340%	Reduces quinones to	This is a null mutation and		
						hydroquinones (vitamin E	removal of carcinogenic quinones		
						alpha-tocopherol quinone,	is affected negatively		
						menadione, benzene quinones)			
Detoxification	rs182420	SULT2A1	А	CT: 1/2	25.5034%	Catalyze the sulfate conjugation	Decreased enzyme function	NAC, MSM, Taurine	
						of many hormones,			
						neurotransmitters, drugs, and			
						xenobiotic compounds			
Neurotransmitter	rs6265	BDNF	G	TT: 2/2	3.02170%	Brain-derived neurotrophic factor,	Associated with mental wellness	Lithium orotate,	
Levels						supports growth and health of		Curcumin, Theanine	
						neurons			
Neurotransmitter	rs578776	CHRNA5	Т	AG: 1/2	48.4664%	Neuronal acetylcholine receptor	Increased nicotine intake		Nicotine
Levels						subunit alpha-5			

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Neurotransmitter	rs165722	COMT	А	CC: 2/2	32.6762%	Degrades catecholamines, Phase	Decreased COMT activity	Hydroxy B12	Methyl B12, Methyl
Levels						II, inactivates hydroxy-estrogens		(hydroxycobalamin)	donors
Neurotransmitter	rs6269	COMT	А	GG: 2/2	11.4331%	Degrades catecholamines, Phase	Decreased COMT activity	Hydroxy B12	Methyl B12, Methyl
Levels						II, inactivates hydroxy-estrogens		(hydroxycobalamin)	donors
Neurotransmitter	rs5993882	COMT	Т	GT: 1/2	38.0985%	Degrades catecholamines, Phase	Decreased COMT activity	Hydroxy B12	Methyl B12, Methyl
Levels						II, inactivates hydroxy-estrogens		(hydroxycobalamin)	donors
Neurotransmitter	rs2391191	DAOA	G	AG: 1/2	49.3000%	D-amino acid oxidase activator,	Associated with cognitive manic	Idebenone,	
Levels						which degrades D-serine, a potent	symptoms	Piracetam,	
						activator of NMDA receptors		Magnesium, Taurine,	
								Lithium orotate	
Neurotransmitter	rs701567	DAOA	G	CT: 1/2	49.9551%	D-amino acid oxidase activator,	Associated with cognitive manic	Idebenone,	
Levels						which degrades D-serine, a potent	symptoms	Piracetam,	
						activator of NMDA receptors		Magnesium, Taurine,	
								Lithium orotate	
Neurotransmitter	rs3749034	GAD1	А	GG: 2/2	68.6151%	Catalyzes production of GABA	High glutamate, low GABA	Taurine, Theanine,	MSG
Levels						from glutamate		NAC,Glycine, Vitamin	
								В3	
Neurotransmitter	rs3828275	GAD1	G	TT: 2/2	7.46300%	Catalyzes production of GABA	High glutamate, low GABA	Taurine, Theanine,	MSG
Levels						from glutamate		NAC,Glycine	
Neurotransmitter	rs3791851	GAD1	А	CT: 1/2	37.0283%	Catalyzes production of GABA	High glutamate, low GABA	Taurine, Theanine,	MSG
Levels						from glutamate		NAC,Glycine	
Neurotransmitter	rs3791878	GAD1	С	GT: 1/2	28.3797%	Catalyzes production of GABA	High glutamate, low GABA	Taurine, Theanine,	MSG
Levels						from glutamate		NAC,Glycine	
Neurotransmitter	rs701492	GAD1	С	CT: 1/2	40.0246%	Catalyzes production of GABA	High glutamate, low GABA	Taurine, Theanine,	MSG
Levels						from glutamate		NAC,Glycine	
Neurotransmitter	rs1137070	MAO-A	С	T: 1/1	N/A	Oxidizes serotonin, dopamine,	Increased expression MAO-A	Curcumin	
Levels						epinephrine, norepinephrine			
Neurotransmitter	rs2769605	NTRK2	С	CT: 1/2	43.9018%	Neurotrophic tyrosine kinase	Decreased BDNF	Theanine, Curcumin,	
Levels						receptor type 2		Beta-alanine, Lithium	
								orotate,	
								Phosphatidylserine	
Neurotransmitter	rs2070762	TH	Т	AG: 1/2	47.8166%	Tyrosine hydroxylase, produces	Low dopamine	N-acetyl-tyrosine,	
Levels					1	dopamine from tyrosine		Mucuna pruriens (with	
								caution)	

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Folate One-Carbon	rs651852	ВНМТ08	Т	CT: 1/2	48.0752%	Methylates homocysteine to	Downregulation	Phosphatidylcholine,	
Metabolism /						methionine		TMG,	
Methylation (FOCM)								Phosphatidylserine,	
								Zinc	
Folate One-Carbon	rs234706	CBS	G	AG: 1/2	39.9436%	Adds I-serine to homocysteine to	Increased responsiveness to	Vitamin B6	
Metabolism /						produce I-cystathionine	homocysteine-lowering effects of		
Methylation (FOCM)							folic acid. Marginally increased		
							disposal of homocysteine.		
Folate One-Carbon	rs3758149	GGH	С	AG: 1/2	37.7989%	This gene catalyzes the hydrolysis	May have functional relevance		
Metabolism /						of folylpoly-gamma-glutamates	and result in alterations in plasma		
Methylation (FOCM)						and	homocysteine levels.		
						antifolylpoly-gamma-glutamates			
						by the removal of gamma-linked			
						polyglutamates and glutamate			
Folate One-Carbon	rs2236225	MTHFD1	G	AG: 1/2	46.1659%	Three distinct enzymatic activities	Increased requirement for choline	Choline	
Metabolism /						related to folate			
Methylation (FOCM)									
Folate One-Carbon	rs1801131	MTHFR	А	GT: 1/2	0.06720%	Converts folic acid to	Low BH4, excess ammonia, low	L-methylfolate,	Folinic acid, Folate
Metabolism /						5-methyltetrahydrofolate	nitric oxide, does NOT lead to	Vitamin B3,	
Methylation (FOCM)							high homocysteine, however high	Potassium, Ornithine,	
							superoxide	Vitamin B6, Vitamin	
								B12, Vitamin C,	
								Rooibos, Manganese	
Folate One-Carbon	rs1801133	MTHFR	С	AG: 1/2	39.5976%	Converts folic acid to	When homozygous it's functioning	L-methylfolate,	Folinic acid, Folate
Metabolism /						5-methyltetrahydrofolate	at about 30% of normal, leads to	Vitamin B12,	
Methylation (FOCM)							high homocysteine, folate	Riboflavin for high	
							concentrations lower.	blood pressure,	
								Ribo-5-phosphate	

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Folate One-Carbon	rs6495446	MTHFS	С	TT: 2/2	7.37770%	MTHFS is the only enzyme known	The problem with this is that	Methylfolate,	Folate, Folinic acid
Metabolism /						to catalyze a reaction with folinic	folinic acid normally acts as a	Magnesium	
Methylation (FOCM)						acid.	regulator of folate metabolism by		
							inhibiting enzymes in this		
							metabolism. In particular, it		
							inhibits the serine		
							hydroxymethyltransferase (SHMT)		
							enzyme, which normally is the		
							main enzyme that converts		
							tetrahydrofolate to 5,10 methylene		
							tetrahydrofolate, which in turn is		
							the substrate for making		
							methylfolate. So, a deficiency in		
							MTHFS will allow folinic acid to		
							rise inhibiting SHMT, which will		
							lower 5,10 methylene		
							tetrahydrofolate, and thus will also		
							lower production of methylfolate,		
							which is needed by methionine		
							synthase in the methylation cycle.		
Folate One-Carbon	rs162036	MTRR	А	AG: 1/2	34.8400%	Methylates, recycles vitamin b12	Less active enzyme	Methyl B12	
Metabolism /									
Methylation (FOCM)									
Folate One-Carbon	rs1801394	MTRR	Α	AG: 1/2	49.3785%	Methylates, recycles vitamin b12	Poor methylation of Vitamin B12	Methyl B12,	
Metabolism /							leading to higher homocysteine	L-methylfolate	
Methylation (FOCM)							levels.		
HPA axis / Endocrine	rs1501299	ADIPOQ	С	GT: 1/2	43.8136%	Important adipokine involved in	Decreased adiponectin	Omega-3 fatty acids	
						the control of fat metabolism and		like fish oil, Coffee,	
						insulin sensitivity, with direct		Leucine, Magnesium,	
						anti-diabetic, anti-atherogenic and		Fiber, Exercise	
						anti-inflammatory activities.			
HPA axis / Endocrine	rs2234693	ESR1	Т	CT: 1/2	49.5149%	Estrogen receptor alpha	Female health affected	Diindolylmethane	
HPA axis / Endocrine	rs9340799	ESR1	А	AG: 1/2	39.4495%	Estrogen receptor alpha	Female health affected	Diindolylmethane	
HPA axis / Endocrine	rs1256030	ESR2	С	AA: 2/2	15.0505%	Estrogen receptor beta	Female health affected	Diindolylmethane	

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
HPA axis / Endocrine	rs1256065	ESR2	А	GG: 2/2	7.53510%	Estrogen receptor beta	Female health affected	Diindolylmethane	
HPA axis / Endocrine	rs1866388	NR3C1	G	AA: 2/2	60.1431%	Glucocorticoid receptor	Mutation associated with	Phosphatidylserine,	
							generalized glucocorticoid	Possibly ketogenic	
							resistance, high cortisol, CFS	diet	
HPA axis / Endocrine	rs852977	NR3C1	G	AA: 2/2	56.1304%	Glucocorticoid receptor	Mutation associated with	Phosphatidylserine,	
							generalized glucocorticoid	Possibly ketogenic	
							resistance, high cortisol, CFS	diet	
HPA axis / Endocrine	rs1544410	VDR	G	CT: 1/2	42.7506%	Vitamin D Receptor	Downregulated Vitamin D	Vitamin D3, Sage,	Methyl donors
							receptor	Rosemary	
HPA axis / Endocrine	rs731236	VDR	А	AG: 1/2	43.3464%	Vitamin D Receptor	Downregulated Vitamin D	Vitamin D3, Sage,	Methyl donors
							receptor, can affect dopamine	Rosemary	
							levels		
Cardiovascular	rs4654748	ALPL	С	TT: 2/2	12.7756%	alkaline phosphatase	Lower concentration b6	Vitamin B6	
Cardiovascular	rs5882	CETP	G	AA: 2/2	33.5376%	Cholesterol ester transfer protein	Cholesterol levels affected	Low fat diet	
Cardiovascular	rs5275	COX2	А	AG: 1/2	47.5291%	Involved in the conversion of	Increased response to fish oil	Omega-3 fatty acids	
						arachidonic acid to prostaglandin		like fish oil	
						H2, an important precursor of			
						prostacyclin and thromboxane A2,			
						among others.			

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Cardiovascular	rs174537	FADS1	G	GT: 1/2	35.4912%	Fatty Acid Desaturase 1	Regulation of saturation of fatty	Omega-3 fatty acids	
							acids, significantly associated with	like fish oil, Plant oils	
							lower concentrations of long-chain		
							PUFA. At baseline, men with the		
							rs174537T allele had lower		
							arachidonic acid (AA) and		
							AA/linoleic acid (LA), and higher		
							interleukin (IL)-6 levels than		
							rs174537GG counterparts. After 3		
							years, rs174537GG men had		
							significantly increased AA (P =		
							0.022),		
							AA/dihomo-gamma-linolenic acid		
							(DGLA) (P = 0.007),		
							docosapentaenoic acid (DPA),		
							low-density lipoprotein (LDL)		
							cholesterol, and oxidized LDL		
							(ox-LDL), but decreased		
							eicosatrienoic acid. The		
							rs174537T group showed		
							significantly increased		
							gamma-linolenic acid and ox-LDL,		
							and decreased eicosadienoic		
							acid, eicosapentaenoic acid		
							(EPA)/alpha-linolenic acid (ALA),		
							and IL-6.		
Cardiovascular	rs854571	PON1	С	CT: 1/2	48.5938%	Major antiatherosclerotic	Decreased function	Omega-3 fatty acids	Cholesterol, High fat
						component of HDL		like fish oil, Fat	diet
								soluble antioxidants,	
								Vitamin K	
Cardiovascular	rs2516839	USF1	G	CT: 1/2	49.8381%	Upstream Stimulatory Factor 1	Cholesterol levels affected	Fiber	High fat diet
Cardiovascular	rs9923231	VKORC1	С	CT: 1/2	47.9961%	Reduces vitamin K 2,3-epoxide to	Related to vitamin K recycling.	Vitamin K	
						the enzymatically activated form.			

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Digestion / Elimination	rs7501331	BCMO1	С	CT: 1/2	27.3055%	Key enzyme in beta-carotene	poor converter	Vitamin A	
						metabolism to vitamin A.			
Digestion / Elimination	rs10889677	IL-23R	С	AC: 1/2	47.5499%	Important part of the inflammatory	Affects intestinal health	Probiotics, Omega-3	
						response against infection. It		fatty acids like fish oil,	
						promotes upregulation of the		Vitamin D3	
						matrix metalloprotease MMP9,			
						increases angiogenesis and			
i						reduces CD8+ T-cell infiltration.			
Energy / Oxidation	rs10370	SOD2	G	GT: 1/2	N/A	Mitochondrial Superoxide	Decreased gene function. Noise	Manganese, Vitamin	Alcohol, Noise
						Dismutase 2	induced hearing loss, rs10370	E in tocotrienol form	(greater chance for
							'TT', rs4880 'GG' diplo-genotype		hearing loss)
							(diplotype) was associated with		
							more gray matter shrinkage in 76		
							individuals who report chronic		
							high levels of alcohol		
							consumption.		
Energy / Oxidation	rs4880	SOD2	А	AG: 1/2	48.9123%	Mitochondrial Superoxide	Decreased gene function. Noise	Manganese, Vitamin	Alcohol, Noise
						Dismutase 2	induced hearing loss, rs10370	E in tocotrienol form	(greater chance for
							'TT', rs4880 'GG' diplo-genotype		hearing loss)
							(diplotype) was associated with		
							more gray matter shrinkage in 76		
							individuals who report chronic		
							high levels of alcohol		
							consumption.		
Energy / Oxidation	rs2855262	SOD3	Т	CC: 2/2	14.9428%	Manganese superoxide dismutase	Decreased gene function	Vitamin E in	
								tocotrienol form,	
								Manganese	